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Abstract

We consider a general mesh network with multiple traf-
fic streams subject to window flow control on a per hop,
per stream bagsis. Scheduling at each server is governed
by “service curve” requirements. We establish lower
bounds on the window sizes such that each stream re-
ceives pre-specified service guarantees.
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1 Introduction

The allocation of network resources to multiple streams
in an integrated services network in conjunction with
a flow control scheme is a recent topic of interest in
the literature. Open loop rate-based flow control (e.g.
“leaky bucket”) has been proposed at network access
points [19] in high speed integrated services networks
in order to eliminate or reduce buffer overflow, provid-
ing a mechanism for the network to support quality of
service guarantees. Under certain conditions, imposing
open loop rate-based flow control within the network
does not increase worst case end-to-end delay [20] [§]
[10], and in fact can increase the capacity of networks
that operate with certain scheduling algorithms [11].
However, the use of open loop rate-based flow control
may increase average end-to-end delay, since the flow of
traffic is sometimes inhibited even when resources are
underutilized. The implication is that, in certain cases,
open loop rate-based flow control may prevent efficient
statistical multiplexing. However, it remains attrac-
tive in high speed networks because of its insensitivity
to large bandwidth-delay products.

Window-based flow control [3] can directly eliminate
the possibility of buffer overflow in communication net-
works by relying on feedback. It has the potential for
providing for efficient statistical multiplexing. For net-
works with large bandwidth delay products, a large
window size and possibly large buffers may be required
for efficient bandwidth utilization. To partially cope
with large bandwidth-delay products, hop-by-hop win-
dow flow control has been proposed (also known as
“credit-based” flow control in ATM networks , e.g.
see [15]). It is commonly believed that window-based
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flow control cannot provide any performance guaran-
tees. Perhaps for this reason, window-based flow con-
trol is often thought to be appropriate only for delay
tolerant applications (e.g. Available Bit Rate (ABR)
traffic). However, we believe that, in conjunction with
rate-based flow control at access points and appropri-
ate scheduling algorithms within the network, window-
based flow control can provide performance guarantees
and may offer an attractive alternative to open loop
rate-based flow control within the network.

In an earlier paper [9], we studied the flow of traf-
fic on a single stream subject to window flow control,
where cross traffic was modelled through constraints
on servers. In this paper, we explicitly model multiple
streams in a general mesh network, where each stream
is subject to window flow control and packet scheduling
is governed by “service curve” requirements, as defined
in Section 2.

We take a deterministic approach along the lines of [6],
since we believe this is a productive way to develop ini-
tial insight into complex queueing phenomena. Indeed,
feedback that arises in window flow control results in
complex interactions between queues, which are often
difficult to analyze rigorously with stochastic models.

The first mathematically rigorous bound on the
throughput of window flow control protocols was ap-
parently first developed by E. L. Hahne [12], in a data
network setting. Hahne derived lower bounds on win-
dow sizes which insured that throughputs were close to
max-min fair [3], assuming round-robin scheduling at
each network node. Our work is similar to Hahne’s in
that we also derive lower bounds on window sizes so
that pre-specified service requirements are met.

In the following section, we introduce the concept of
“service curves”. In Section 3, we describe our model
in detail. We present our main result in Section 4, and
conclude in Section 5 with some brief remarks.

2 Background

In this paper, we draw heavily upon the general concept
of service curves [8], which has roots in the work of
Parekh and Gallager [16]. The service curve concept
will be used to describe the model we define in Section
3.

2.1 Service Curves

We consider a discrete time model, where time is di-
vided into slots, numbered 0,1,2,---. Consider a net-

To appear in Proc. 36th IEEE Conf. on Decision & Control, Dec. 1997. p-1



work element with entering and exiting traffic described
by the rate functions 7" and r°%. Specifically, we de-
fine ri*[t] to be the number of packets arriving in slot
t and R™(t) to be the number of packets arriving in
the interval [1,¢]. We similarly define 7°“![t] to be the
number of packets departing from the network element
in slot ¢ and R°“(t) to be the number of packets de-
parting from the network element in the interval [1, ¢].
The number of packets stored in the network element
at the end of slot ¢ > 0 is B[t] = R™™(t) — R°%“(t), where
we assume B[0] = 0. Suppose S is a given non-negative
function. To simplify the notation, assume without loss
of generality that S(z) = 0 for all z < 0.

Definition 1. (Service Curve Guarantee). A sys-
tem is said to guarantee the service curve S if for all
t > 0, there exists s < t such that R°“(t) — R™"(s) >
S(t—s).

Definition 1 has been previously reported in [17]. It has
also been independently made by Agrawal and Rajan
[1] and Le Boudec [14]. Earlier related definitions of
service guarantees were made independently by Cruz
[7], Hung and Kesidis [13], and Stiliadis and Varma
[18].

Given two functions F' and G defined on the non-
negative integers, define the convolution of F' and G,
written F' x G, as

FxG(z) = min

z1+z2=2,21,22>0

{F(21) + G(x2)} -

The convolution operator is analogous to conventional
convolution prevalent in linear system theory, but is
in terms of the “min-plus algebra”. In the min-plus
algebra, the minimum operation is associated with the
usual addition operation, and the addition (“plus”) op-
eration is associated with the usual multiplication op-
eration. The minimum and “plus” operation form an
algebra in the sense that they are both commutative
and associative operators, and “plus” is distributive
over “min.” For more information and applications, the
reader is referred to [2]. It is easy to verify that the con-
volution operation is commutative and associative, and
that it distributes over the minimum operation. It is
straightforward to verify that the following is in fact
equivalent to Definition 1.

Alternative Definition 1. (Service Curve Guar-
antee). A system is said to guarantee the service curve
S if for all t > 0 there holds R°V!(t) > S(t) * R™™(t).

Define the “impulse function” §(z) = 0 if z < 0, and
§(z) = +oo if z > 0. Note that for any function F,
F % 6(z) = F(z). It is interesting to note then that a
service curve is analogous in some sense to the concept
of an impulse response of a linear time invariant system.
The connection to linear system theory has also been
independently reported by Chang [4].
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Figure 1: Server o(i, h) with streams i and j.
The virtual delay at slot ¢, D[t], is defined as
D[t] = min{A : A > 0 and R°“(t + A) > R™"(t)} .

Theorem A. [8] Assume that R, satisfies the follow-
ing “burstiness constraint”: R™(t) — R (s) < b(t — s)
for all s < t. Suppose a system guarantees a service
curve of S. Then

(a) (Buffer Requirements) There holds for all t

Blf) < max{[b(@) - S(@)]*}
(b) (Bound on Delay) There holds for all
D[t] < r;l%({min{A A >0 and b(a) < S(a+A)}}.

(c) (Output Burstiness) For all s < t there holds
RO¥(t) — RO (s) < bo¥(t — s), where

bout(z) = IES%({I’(”’ +A) - S(A)}.

Theorem B. [8] (Convolution Theorem) Consider
traffic flowing through a system consisting of n subsys-
tems in tandem, where the jt* subsystem guarantees
the service curve S7. Then the system as a whole guar-
antees the service curve S™t = St % §% x ... x S,

3 Network Model

A packet switched network is represented by a directed
graph G = (V, E) where V is the set of vertices and E
is the set of edges. A vertex in this graph represents a
packet switch, and an edge in this graph represents a
unidirectional communication link. Within each packet
switch, there is a queueing server associated with each
outgoing link that schedules packet transmissions on
that link.

For simplicity, we assume that each server has the same
capacity ¢. Specifically, the maximum number of pack-
ets that a server can serve is assumed to be ¢ per slot,
for each server in G. We index the servers by the inte-
gers.

We assume that a finite set of traffic streams is flow-
ing through the network of servers, and we index these
traffic streams by the integers. Stream ¢ flows through
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a fixed sequence of n; servers. Let o(i,h) be the in-
dex of the server visited by stream 4 at hop h. Thus,
stream ¢ traverses a path in the graph, such that
{o(i,1),0(i,2),...,0(i,n;)} is the ordered sequence of
servers visited by traffic stream ¢. Define, I; j to be
the set of traffic streams which share server o(i, h), i.e.
L= {(,m) : o(j,m) = o(i,h)}. Similarly, let I, be
the set of traffic streams which pass through the server
for link e in G.

Let r?[¢] and R!(t) be the number of packets departing
server o(i, h) from stream ¢ during slot ¢ and during the
interval [1,t], respectively (i.e. RIt) = 3¢ | rh[n] =
r#[1,%]). The packets departing server o(i,h) pass
through network element Ni’}f before reaching server
o(i,h 4+ 1). For example, network element N}'; may
model forward propagation delay. We define rf"f[t]
and RZ f(t) as the number of packets entering server
o(i,h+1) (and hence departing network element N',)
from stream 4 during slot ¢ and during the interval [1, ¢],
respectively. For notational convenience, let r?’ ¢[t] and
R?, #(t) be the number of packets entering the network
(i.e., arriving to server o(i,1)) from stream 4 during
slot ¢, and during the interval [1, ], respectively. Each
stream 4 entering server o(i, h + 1) first enters its own
buffer (see Figure 1). Remembering that packets arrive
at server o(i, h + 1) at rate 7'2 ; and assuming that the
network is empty at slot 0, the amount of packets from
the i** stream held at server o(i,h + 1) at the end of
slot t is

BI1[t] = B4 (t) - BRI (0) W

For all 4 and h we assume that a “target service curve”
,SA’zh is given. We would like stream i to be guaranteed
the service curve SP at server o(i, h), i.e. we would like
the following inequality to hold for all ¢:

RI(t) > BRI+ Sh(t) . 2)

Toward this end, packets from each stream are assigned
deadlines in the following manner. The packets from
stream ¢ are indexed in order of arrival, starting from
index 1. For example, if exactly one packet arrives from
stream i to server o(i, h) during slot ¢, it has the index
RZ}l (t). Packet k arriving to server o(i, h) from stream

i in slot ¢ is assigned the deadline Dzk where
D}, =min{A:A>0and R} '« SHA) > k} . (3)

Intuitively, these deadlines are assigned so that, if met,
the departure process R} (t) will not cross below RZ;I *

Sh(t). The deadline assignments in (3) are consistent
with the so-called scheduling “SCED” policy defined
in [17]. The following lemma demonstrates that it is
possible to compute these deadlines at server o(i, h) in
real-time. In other words, if packet k from stream i
arrives to the server o(i, h) at time ¢, then the deadline
for that packet can be calculated without knowledge of
RZ}l(s) for s > t.

h+l RM2
H 1

\;
m+1| Server | Rm+2
R]}, ofi.h+2) ],

Figure 2: Example of three servers along stream 1.

Lemma 1 If the k" packet of stream i arrives to
server o(i, h) at time t, then Dﬁk = Df’k(t), where
Dﬁk(t) = min{u:u>tand g(u) >k}, (4)

and g(u) = mins:ogsgt—1{R2}1(s) + Sh(u—s)}.
The next lemma will be useful later.

Lemma 2 The number of packets from stream i that
are assigned deadlines which lie in [1,t], for the server
o(i, h), is equal to ZI'(t), where

ZI(t) = R+ SH() ()

forh=1,2,--- n;.

3.1 Scheduling Algorithm

Nominally, the server o(i, h) serves packets in an ear-
liest deadline first manner. More specifically, in each
slot ¢ the server serves packets with the earliest dead-
lines among those “available” and “eligible.” A packet
is available in slot ¢ if it is queued in the (buffer at the)
server from the previous slot, or it arrives to server
o(i, h) during slot ¢ (i.e. we consider a “cut-through”
mode of operation). A packets eligibility is determined
by a window flow control protocol.

If h = n;, then an available packet at server o(i, h) is
always eligible. In other words, a stream is not sub-
ject to window flow control at its last hop. Otherwise,
server o(i, h) and server o(i, h + 1) exchange “tokens”
to determine if packets at server o(i, h) from stream 3
are eligible. There are K tokens initially available at
server o(i, h) for stream 4, where K is a non-negative
integer, called the “window size.” Each packet from
stream ¢ must acquire a token in order to become el-
igible. A packet from stream 4 departing from server
o(i,h) carries the acquired token with it. After the
packet receives service from server o(i, h+1), the token
is sent back to server o(i, h) through a network element
Ni”‘b. More precisely, the number of tokens sent back to
server o(i, h) (and hence entering network element Ni’fb)
from server o(i, h+1) during slot  is 7{ " [t]. Let rl,[¢]
(resp. RP,(t)) be the number of tokens from stream i
returning to server o(i, h) from server o(i,h + 1) (and
hence departing network element N{”b) during slot ¢
(resp. during the interval [1,¢]). For example, the net-
work element Ni'fb could model backward propagation
delay.
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Figure 2 is an example of three servers in tandem along
the path of stream . We assume in this specific exam-
ple that stream j follows the same path as stream i
for at least these three hops, i.e. o(i,h) = o(j,m),
o(i,h +1) = o(j,m + 1), and o(i, h + 2) = o(j, m + 2).
Note that in general, each stream need not take the
same path as any other stream for any number of hops.

The number of outstanding tokens (or the number
of “unacknowledged packets”) for stream i at server
o(i, h) at the end of slot ¢ is defined to be T}*[t], where

THt) = RIt) — R?,b(t) . (6)

If TMt — 1] < K}, then during slot ¢ there is at least
one token available at server o(i, h) for packets from
stream 4, and any available packet may acquire it. If
T}[t—1] = K} then no tokens are available for stream i
at the beginning of slot ¢; However, if rﬁb[t] > 0, at least
one token returns from server o(i, h + 1) during slot ¢,
and an available packet from stream i at server o(i, h)
may aquire it (and hence potentially immediately de-
part server o(i, h) during slot t.) If Th[t — 1] = K}
and r};[t] = 0, then no tokens are available for stream
i at server o(i, h), and stream 4 is said to be blocked
at server o(i, h) during slot ¢. In this case, note that
THt] = K!.

In summary, in each slot ¢, server o(i, h) serves as many
available packets as it can, up to a maximum of ¢ pack-
ets; The packets are chosen among all streams which
are not blocked, such that packets with earlier dead-
lines receive priority for service.

For notational convenience, if h = n;, we define Rf“ =
R!, = RP, SI*! = b, and K] = co. Thus, (2) is
trivially true for h = n; + 1.

We characterize network elements N7 and N7 by
“service curves” S]’-"f and ST, respectively for alle € E

b J’b,
and (j,m) € I,. Specifically, we assume that
R} ;(t) > R} * S} (1) (7)
and
Rg,b(t) > R« Sﬁb(t) (8)
for all ¢. In addition, we assume that
(1) =0, 9)

for all e € E and (j,m) € I.

Finally, we assume the resource allocation condition
Yo S < e, (10)
(4;m)€el.
forallee Fandt=0,1,2...

4 Main Result

We are interested in analyzing traffic for an arbitrary
stream ¢ and an arbitrary hop h. If we can find a ser-
vice curve guarantee for stream i at server o(i, h), then

an end-to-end service curve guarantee for any stream
in the network can be determined by the convolution
theorem, and bounds on end-to-end delay are implied
by Theorem A.

Note that if blocking never occurs in the network then
effectively there is no window flow control and each
stream (i,h) is guaranteed the service curve S! at
server o(i, h) [8]. Further, note that no matter how
large the window size K may be, blocking of stream
(i,h) is always possible since we assume no upper or
lower bounds to the amount of traffic each source gener-
ates. Despite possible blocking by window flow control,
our main result, Theorem 1, establishes that finite win-
dow sizes are sufficient to guarantee that stream (i, h)
receives service curve S for all (i, h).

Before stating the main result, we introduce some con-
venient notation.

For all e € FE let

~

R";n = r;lg,gc{g;”(x) - S;n * _moop(x)} + A.;n

for all (j,m) € I, ,

where
AT = r;lg())c{S;-” (z) = ST+ ST (2)}
and
;’loop(x) S S;”'H * ST (z)

for all (j,m) € L.

Theorem 1. Service Curve Guarantee If (7) -

(10) hold and the window sizes satisfy K] > K']m for
all (j,m) € I, then for any (i,h) € I, , server o(i, h)
guarantees stream (i, h) the service curve S, i.e. for
all t there holds

RM) > RI7'«SHD) - (11)

Furthermore,
RIt) > RE'«SHt) + AL, if T = KP.(12)

To prove Theorem 1, we make use of the following lem-
mas.

Lemma 3 Suppose (7) - (9) hold and (j,m) € I, for
any e € E. Suppose also that the total amount of un-
acknowledged traffic on stream j satisfies T]"[p] = KT,
and R (u) > R, « S'Jm“(u) for all u < p. Then
there exist a slot ¢ < p such that the total amount of
packets served by server o(i,h) on stream j over the
interval [q + 1, p] satisfies

Ry (p) — Rj* (@) 2 Sjloopp—a) + K7 . (13)
Furthermore, we have,

p—q > —. (14)
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Lemma 4 Suppose (i,h) € I, and e € E, and fiz t.
Let

7 = max{s:s<t and Z ri'[s] < c}
(4m)el.

If all packets served in the interval [1,t] at server o(i, h)
have deadlines greater than t, then define p = 7. Oth-
erwise let p be the last slot in [1,t] when a packet with
deadline greater than t is served. If IF, is the set of
streams where server o(i,h) has served at least one
packet from that stream in the interval [p + 1,t] and
(j,m) € I}, such that BJ[p] > 0, then

TP = K. (15)

Lemma 5 Suppose (7) holds and (j,m) € I, for any
e € E. Suppose further that the total number of packets
served by server o(i, h) on stream (j,m) € I, over the
interval [1,q] satisfies

R™q) < RI7'xSP(q) .

If p is such that p < q and either

(a) Bf"[p] =0

(b) T]"[p]
then

Ri'(q) - R*(p) < SP(g-»p). (16)

Lemma 6 Fizt and let (i,h) € I, e € E, and assume
that (7) - (10) hold. Suppose also that for all s <t—1,
(j;m) € Lin, we have RJ'(s) > R;”‘f_l * ST (s) and that
RI'(s) > R« S5 (s) + AT if Tj'[s] =

(i) If T][t]
Ri(t) - Ri'(t1) > S

i) If Rh(t) < RM1%8h(t) and TPt < K, then there
] i f [ 2 [
exist s* < t such that

= K}, then there exist t; <t such that

loop( ) +th .

RE(t) — RI(s™) > SP(t —57)
and if BMs*] > 0, there exist t; < s* such that

R}(s*) — R} (t1) > S}o0p(s™ — t1) + K} .
Proof of Theorem 1: We will use time induction to

prove the theorem. Fix any slot ¢ > 0 and let (i,h) €
I..

Let #H(t) be the induction hypothesis that for all
(jm) € I, e € E, and for all time s < t — 1 there
holds

RT(s) > R;’f;l * S;”(s) , (17)

and R
R'(s) > RI';TxST'(s)+ AT

,if T3] = K. (18)

= K" and R7"(p) > R7';' * S7(p) + AT,

For t = 1, we have
RM0)=02>0=R];"+S50),
and furthermore, we have T}*[0] = 0 < K. Thus, H(1)

holds. Assuming that #(t) holds, we now establish
H(t+1).

Fix (i, h) € I, for any e € E. Suppose that T}*[t] = K.
By the induction hypothesis H(t), for t; < ¢, we have

RMty) > RIG' « Sh(t,). Using Lemma 6 (i), there
exists t; < t such that
R}t) = R}(t)+ R}(t) — R} (t)
> Rh(t1)+Szhloop( t1)+th
> Rh(tl) + S':lloop( tl) + th
> RIxSP(t) + St —t) + K
= Rh 1( )+Sh(t1_U)+S£loop(t_t1)+'kih
> Ri7(0) + 8f % Sfigep(t —v) + K
> RZfl( )+Sh*shloop( U)
+Szh( ) Sh*Shloop(t_v) +A?
> RI;'(v)+ SH(E—v)+ A}
> RIG'xSHE) + A7 (19)
> RISV« SHE) . (20)

Thus, (19) proves (18) for the hypothesis H(t + 1).
Now suppose that T/*[t] < K. Furthermore, suppose
that

RIt) < RI'=SME). (21)
By Lemma 6 (i), there may exist s* < t such that
B!'s*] = 0 and RI(t) — RI(s*) > St(t — s*), which
gives us

R (t)

R}(s*) + R}(t) — R} (s")

R}7H(s) + R} (t) — R}(s")
R;ffl( )+ Sh(t — %)

RIT  Sh(t) (22)

v 1V

Otherwise, there exists #; < s* < t such that B?[s*] >
0 and R (t1) > RZ;I * Sh(t1), using H(t). Applying
Lemma 6 (i¢), this gives us

R}(t) = R[t)+ R} (s")— R} (h)
+ RINt) — RI(s™)
> RIt1) + Stpop(s* —t1) + K
+ S"( s%)
> RI(t1) + Slioop(s™ —t1) + K
+ Sh( s%)
> RIty) + SP xSk op(t — t1) + KP
> RI(ty) + SP xSkt —t1) + SP(t — t1)

_Sh*Sz loop( t1)+A?
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RI(ty) + SE(t — t1) + Al

> R SH(t) + SHE—t) + Al
= RIF'(0) + St —v) + SFt—t) + Al
> RI'(v)+ 8PSt —v) + Sh(t—v)
— 85 S (t —v)
= RIS M)+ SHE—v)
> RV SHE) . (23)

Thus, (22) and (23) contradict (21), and so
RIt) > RI' s SHE),if THH < KP. (24)

Finally, (20) and (24) prove (17) for the hypothesis
HE+1). o

5 Closing Remarks

Given the results of [9][1][4][5], one might expect that
a window size of K", is sufficient to guarantee that

stream (i, h) is guaranteed the service curve S, where

IA(Z-’fold = max{.SA'zh(a:) - 5’1” * S{L * Szh ()} . (25)

Joop
Comparing this to Theorem 1, it can be shown that
Kz.’fold < K. The potentially larger window size K}
was apparently necessary here to insure that (16) holds.

The identification of guaranteed service curves for win-
dow sizes smaller than that specified in Theorem 1 is a
subject for future investigation.

It would also be of interest to investigate window
flow control protocols exercised on an aggregate basis,
rather than a per-connection basis as in this paper.
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